
Impact of Heat Waves on All-Cause Mortality in India Siddhartha Mandal

(siddhartha@ccdcindia.org, siddhartha.mandal@ashoka.edu.in)

National Workshop on Heatwaves 2024 February 13th 2024

Funding: FORMAS : A Swedish Research Council for Sustainable Development

The health impacts of Heat

Affects: Cardiovascular health Respiratory health Cerebrovascular health

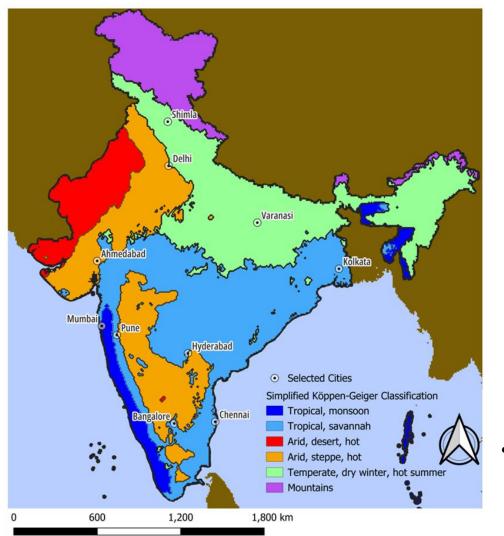
Mechanistic factors: Physiological Behavioral

Interaction with other environmental exposures: Particulate matter Ozone

Ref: Ebi, Kristie L., et al. "Hot weather and heat extremes: health risks." The lancet 398.10301 (2021): 698-708.

To evaluate the association between high temperatures and heatwaves and daily mortality in India

Full length article


Impact of heatwaves on all-cause mortality in India: A comprehensive multi-city study

Jeroen de Bont^{a,1,*}, Amruta Nori-Sarma^{b,1}, Massimo Stafoggia^{a,c}, Tirthankar Banerjee^d, Vijendra Ingole^e, Suganthi Jaganathan^{a,f,g}, Siddhartha Mandal^{f,g}, Ajit Rajiva^{f,g}, Bhargav Krishna^h, Itai Kloog^{i,j}, Kevin Lane^b, Rajesh K Mall^k, Abhiyant Tiwari¹, Yaguang Wei^m, Gregory A. Wellenius^b, Dorairaj Prabhakaran^{f,g}, Joel Schwartz^{m,2}, Poornima Prabhakaran^{f,g,2}, Petter Ljungman^{a,n,2}

de Bont, Jeroen, et al. "Impact of heatwaves on all-cause mortality in India: a comprehensive multi-city study." Environment International (2024): 108461.

Data population – time series analysis

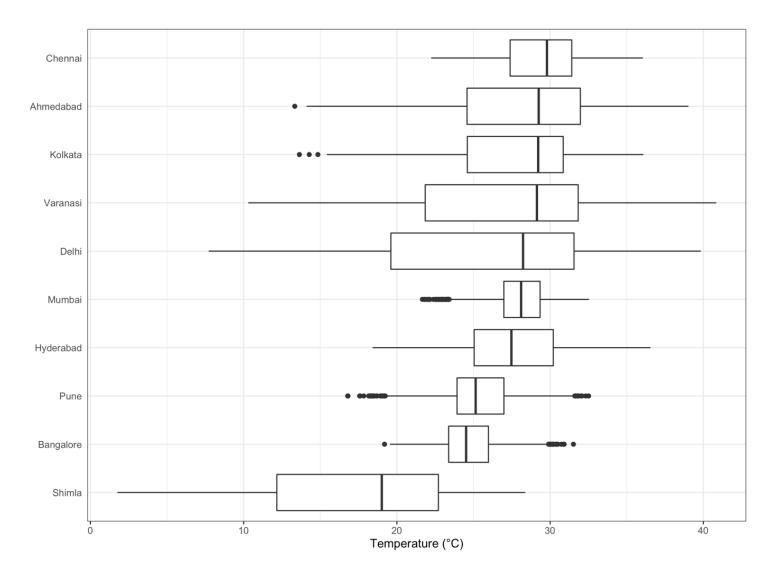
City	Population (2011)	Time period	Mortality [N° (daily mean)]	
Ahmedabad	6,550,084	2008 - June 2019	510217 (122)	
Bangalore	7,552,321	2008 - 2012	220521 (121)	
Chennai	7,139,630	2010 - 2019	592336 (164)	
Delhi	16,349,831	2011 - 2018	830280 (284)	
Hyderabad	7,677,018	2008 - June 2011	99006 (78)	
Kolkata	4,496,694	2010 - 2019	625213 (172)	
Mumbai	20,185,064	2009 – Nov. 2015	548592 (251)	
Pune	6,451,618	2008 - 2012	121961 (68)	
Shimla	171,817	2008 – Aug. 2012	7623 (5)	
Varanasi	1,746,467	2008 – Nov 2018*	81413 (223)	

Daily mean temperatures were obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) at a resolution of 28 km × 28 km resolution (0.25 ° × 0.25 °).

FORMAS

This is a derivative map from the Köppen Geiger classification (Beck et al. 2018)

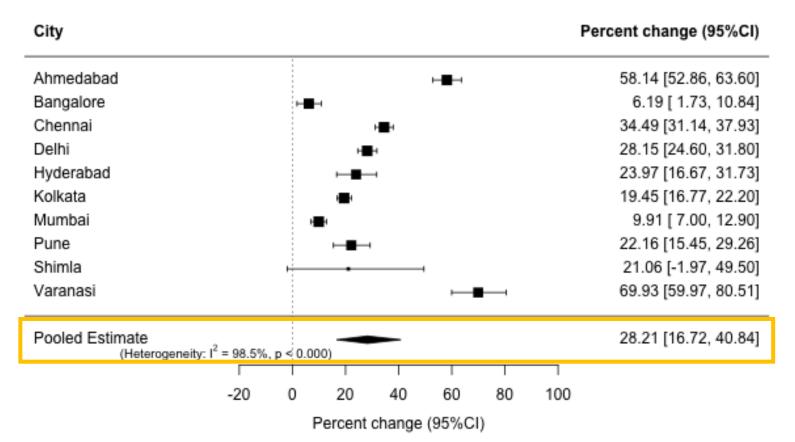
High temperatures



We followed a **two-stage analytic protocol** similar: city-specific associations and meta-analyses.

- We used a 5-day average temperature of current and previous 4-day exposure (lag04) to estimate the effect on daily mortality (comparing minimum temperature mortality vs 99th percentile)
- Interaction with air pollution: we evaluated the association between temperature and mortality corresponding to low, medium, and high air pollution values

Temperatures across India



Associations between temperatures and mortality

A) High temperature

v.chairindia.org/

Heatwave

Statistical analysis

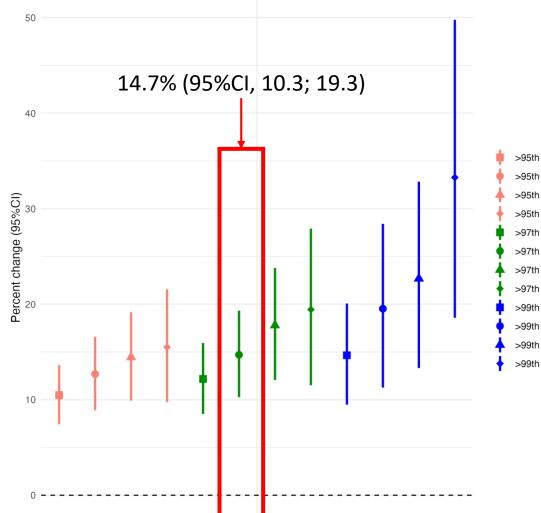
We followed a **two-stage analytic protocol** similar: city-specific associations and meta-analyses.

Heatwave analyses:

- Our main heatwave definition was defined as two consecutive days with an intensity above the 97th annual percentile.
- We further identified heatwaves as 1, 2, 3 and 5 consecutive days with an intensity above the 95th, 97th and 99th annual temperature percentile.
- Attributable fraction for each heatwave definition

$$D_a = \frac{N_{HW}^c}{year} \times D_e^c \times \left(\frac{RR_{HW}^c - 1}{RR_{HW}^c}\right)$$

 N_{HW}^{c} /year = Number of heatwave days per year, varies by heatwave definition (*HW*) and city *c*; D_{e}^{c} = average number of expected daily deaths for city *c*((annual mortality rate * city population)/365·24 days); RR_{HW}^{c} = city-specific heatwave relative risk.

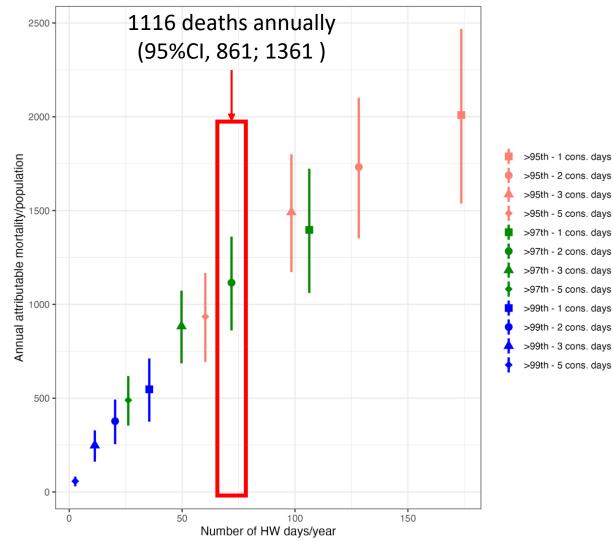

Heatwave characteristics

FORMAS

City	No. of heatwaves	Average HW per year	Day in the season from Jan 1st	Average length of HW (days)	Intensity HW in °C (%) [#]
Ahmedabad	28	3.1	83.1	4.1	36.8 (2.4)
Bangalore	13	3.2	45.2	3.8	29.8 (1.9)
Chennai	18	2.2	91.7	5.4	34.2 (1.5)
Delhi	19	2.7	66.9	3.9	37.7 (3.0)
Hyderabad	8	4.0	69.6	4.9	35.2 (1.4)
Kolkata	21	3.0	74.0	4.2	34.2 (1.8)
Mumbai	19	3.6	98.7	3.7	31.5 (1.1)
Pune	13	4.3	51.2	3.8	31.3 (2.4)
Shimla	10	2.5	100.7	4.8	26.5 (3.8)
Varanasi	20	2.2	61.5	4.8	37.6 (2.1)
Overall	168	2.9	75.2	4.3	34.2 (2.1)

Heatwave and mortality

>95th - 1 cons. days
>95th - 2 cons. days
>95th - 3 cons. days
>95th - 5 cons. days
>97th - 1 cons. days
>97th - 2 cons. days
>97th - 3 cons. days
>97th - 5 cons. days
>99th - 1 cons. days
>99th - 2 cons. days
>99th - 2 cons. days
>99th - 2 cons. days
>99th - 3 cons. days
>99th - 5 cons. days


↑Effect size estimates for daily mortality using heatwave definitions with successively higher percentiles as cut-offs and longer duration

FORMAS

https://www.chairindia.org/

Comparison attributable deaths

 \downarrow number of attributable deaths related to heatwaves when using longer duration and heatwave definition using higher percentile threshold

FORMAS

```
https://www.chairindia.org/
```


FORMAS

- We observed associations between high temperatures and heatwaves, and daily mortality across multiple cities in India.
- We observed that longer and more intense heatwaves are linked to an increased mortality risk, whereas using shorter and less intense definitions of heatwaves resulted in a higher burden of heatwave-related deaths.
- Both definitions of heatwaves and the burden associated with each definition should be incorporated into planning and decision-making processes for policymakers to effectively prioritize public health interventions that address the present and future health risks associated with heatwaves in India.

Special thanks for sharing the data:

Dr. Bhargav Krishna, Dr. Hem Dholakia, Dr. Tirthankar Banerjee, Dr. Vijendra Ingole, Dr. Yaguang Wei, Dr. Abhiyant Suresh Tiwari, Dr. Mavalankar, Dr. R K Mall & Dr. Amit Garg

Funding: FORMAS : A Swedish Research Council for Sustainable Development